6,487 research outputs found

    The Gradient Model Load Balancing Method

    Get PDF
    A dynamic load balancing method is proposed for a class of large-diameter multiprocessor systems. The method is based on the gradient model, which entails transferring backlogged tasks to nearby idle processors according to a pressure gradient indirectly established by requests from idle processors. The algorithm is fully distributed and asynchronous. Global balance is achieved by successive refinements of many localized balances. The gradient model is formulated so as to be independent of system topology

    Simulated Performance of a Reduction-Based Multiprocessing System

    Get PDF
    Multiprocessing systems have the potential for increasing system speed over what is now offered by device technology. They must provide the means of generating work for the processors, getting the work to processors, and coherently collecting the results from the processors. For most applications, they should also ensure the repeatability of behavior, i.e., determinacy, speed-independence, or elimination of critical races. Determinacy can be destroyed, for example, by permitting-in separate, concurrent processes statements such as x: = x + 1 and if x = 0 then… else… , which share a common variable. Here, there may be a critical race, in that more than one global outcome is possible, depending on execution order. But by basing a multiprocessing system on functional languages, we can avoid such dangers. Our concern is the construction of multiprocessors that can be programmed in a logically transparent fashion. In other words, the programmer should not be aware of programming a multiprocessor versus a uniprocessor, except for optimizing performance for a specific configuration. This means that the programmer should not have to set up processes explicitly to achieve concurrent processing, nor be concerned with synchronizing such processes. Multiprocessor systems present unique concurrency problems. Rediflow combines disciplined von Neumann processes with a hybrid reduction and dataflow model in an effective packet-switching network

    Distributed Recovery in Applicative Systems

    Get PDF
    Applicative systems are promising candidates for achieving high performance computing through aggregation of processors. This paper studies the fault recovery problems in a class of applicative systems. The concept of functional checkpointing is proposed as the nucleus of a distributed recovery mechanism. This entails incrementally building a resilient structure as the evaluation of an applicative program proceeds. A simple rollback algorithm is suggested to regenerate the corrupted structure by redoing the most effective functional checkpoints. Another algorithm, which attempts to recover intermediate results, is also presented. The parent of a faulty task reproduces a functional twin of the failed task. The regenerated task inherits all offspring of the faulty task so that partial results can be salvaged

    Final spins from the merger of precessing binary black holes

    Get PDF
    The inspiral of binary black holes is governed by gravitational radiation reaction at binary separations r < 1000 M, yet it is too computationally expensive to begin numerical-relativity simulations with initial separations r > 10 M. Fortunately, binary evolution between these separations is well described by post-Newtonian equations of motion. We examine how this post-Newtonian evolution affects the distribution of spin orientations at separations r ~ 10 M where numerical-relativity simulations typically begin. Although isotropic spin distributions at r ~ 1000 M remain isotropic at r ~ 10 M, distributions that are initially partially aligned with the orbital angular momentum can be significantly distorted during the post-Newtonian inspiral. Spin precession tends to align (anti-align) the binary black hole spins with each other if the spin of the more massive black hole is initially partially aligned (anti-aligned) with the orbital angular momentum, thus increasing (decreasing) the average final spin. Spin precession is stronger for comparable-mass binaries, and could produce significant spin alignment before merger for both supermassive and stellar-mass black hole binaries. We also point out that precession induces an intrinsic accuracy limitation (< 0.03 in the dimensionless spin magnitude, < 20 degrees in the direction) in predicting the final spin resulting from the merger of widely separated binaries.Comment: 20 pages, 16 figures, new PN terms, submitted to PR

    Rediflow Multiprocessing

    Get PDF
    We discuss the concepts underlying Rediflow, a multiprocessing system being designed to support concurrent programming through a hybrid model of reduction, dataflow, and von Neumann processes. The techniques of automatic load-balancing in Rediflow are described in some detail

    Thermodynamical Consistent Modeling and Analysis of Nematic Liquid Crystal Flows

    Full text link
    The general Ericksen-Leslie system for the flow of nematic liquid crystals is reconsidered in the non-isothermal case aiming for thermodynamically consistent models. The non-isothermal model is then investigated analytically. A fairly complete dynamic theory is developed by analyzing these systems as quasilinear parabolic evolution equations in an Lp−LqL^p-L^q-setting. First, the existence of a unique, local strong solution is proved. It is then shown that this solution extends to a global strong solution provided the initial data are close to an equilibrium or the solution is eventually bounded in the natural norm of the underlying state space. In these cases, the solution converges exponentially to an equilibrium in the natural state manifold

    On The Assembly History of Dark Matter Haloes

    Full text link
    (abridged) We study the mass assembly history (MAH) of dark matter haloes. We compare MAHs obtained using (i) merger trees constructed with the extended Press-Schechter (EPS) formalism, (ii) numerical simulations, and (iii) the Lagrangian perturbation code PINOCCHIO. We show that the PINOCCHIO MAHs are in excellent agreement with those obtained using numerical simulations. Using a suite of 55 PINOCCHIO simulations, with 256^3 particles each, we study the MAHs of 12,924 cold dark matter haloes in a \LambdaCDM concordance cosmology. We show that haloes less massive than the characteristic non-linear mass scale establish their potential wells much before they acquire most of their mass. The time when a halo reaches its maximum virial velocity roughly divides its mass assembly into two phases, a fast accretion phase which is dominated by major mergers, and a slow accretion phase dominated by minor mergers. Each halo experiences about 3 \pm 2 major mergers since its main progenitor had a mass equal to one percent of the final halo mass. This major merger statistic is found to be virtually independent of halo mass. However, the average redshift at which these major mergers occur, is strongly mass dependent, with more massive haloes experiencing their major mergers later.Comment: 15 pages, 13 figures (with 2 new), accepted by MNRA

    Current carrying capacity of carbon nanotubes

    Full text link
    The current carrying capacity of ballistic electrons in carbon nanotubes that are coupled to ideal contacts is analyzed. At small applied voltages, where electrons are injected only into crossing subbands, the differential conductance is 4e2/h4e^2/h. At applied voltages larger than ΔENC/2e\Delta E_{NC}/2e (ΔENC\Delta E_{NC} is the energy level spacing of first non crossing subbands), electrons are injected into non crossing subbands. The contribution of these electrons to current is determined by the competing processes of Bragg reflection and Zener type inter subband tunneling. In small diameter nanotubes, Bragg reflection dominates, and the maximum differential conductance is comparable to 4e2/h4e^2/h. Inter subband Zener tunneling can be non negligible as the nanotube diameter increases because ΔENC\Delta E_{NC} is inversely proportional to the diameter. As a result, with increasing nanotube diameter, the differential conductance becomes larger than 4e2/h4e^2/h, though not comparable to the large number of subbands into which electrons are injected from the contacts. These results may be relevant to recent experiments in large diameter multi-wall nanotubes that observed conductances larger than 4e2/h4e^2/h.Comment: 12 pages, 4 figure

    PTCOG Head and Neck Subcommittee Consensus Guidelines on Particle Therapy for the Management of Head and Neck Tumors

    Get PDF
    Purpose: Radiation therapy is a standard modality in the treatment for cancers of the head and neck, but is associated with significant short- and long-term side effects. Proton therapy, with its unique physical characteristics, can deliver less dose to normal tissues, resulting in fewer side effects. Proton therapy is currently being used for the treatment of head and neck cancer, with increasing clinical evidence supporting its use. However, barriers to wider adoption include access, cost, and the need for higher-level evidence.Methods: The clinical evidence for the use of proton therapy in the treatment of head and neck cancer are reviewed here, including indications, advantages, and challenges.Results: The Particle Therapy Cooperative Group Head and Neck Subcommittee task group provides consensus guidelines for the use of proton therapy for head and neck cancer.Conclusion: This report can be used as a guide for clinical use, to understand clinical trials, and to inform future research efforts.</p

    ELUCID IV: Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias

    Full text link
    We examine the quenched fraction of central and satellite galaxies as a function of galaxy stellar mass, halo mass, and the matter density of their large scale environment. Matter densities are inferred from our ELUCID simulation, a constrained simulation of local Universe sampled by SDSS, while halo masses and central/satellite classification are taken from the galaxy group catalog of Yang et al. The quenched fraction for the total population increases systematically with the three quantities. We find that the `environmental quenching efficiency', which quantifies the quenched fraction as function of halo mass, is independent of stellar mass. And this independence is the origin of the stellar mass-independence of density-based quenching efficiency, found in previous studies. Considering centrals and satellites separately, we find that the two populations follow similar correlations of quenching efficiency with halo mass and stellar mass, suggesting that they have experienced similar quenching processes in their host halo. We demonstrate that satellite quenching alone cannot account for the environmental quenching efficiency of the total galaxy population and the difference between the two populations found previously mainly arises from the fact that centrals and satellites of the same stellar mass reside, on average, in halos of different mass. After removing these halo-mass and stellar-mass effects, there remains a weak, but significant, residual dependence on environmental density, which is eliminated when halo assembly bias is taken into account. Our results therefore indicate that halo mass is the prime environmental parameter that regulates the quenching of both centrals and satellites.Comment: 21 pages, 16 figures, submitted to Ap
    • …
    corecore